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Abstract: The possibility of electrochemical determination of molnupiravir has been theoretically 

evaluated for the first time. The molnupiravir electrochemical oxidation over the poly((1,2,4-triazole)-

co-(squaraine dye)) composite with cobalt (III) oxyhydroxide has been theoretically evaluated. The 

correspondent mathematical model analysis has shown that the composite is an efficient electrode 

modifier for molnupiravir electrochemical determination. As for the oscillatory behavior is more 

probable than for the simplest case, and its probability will be higher in alkaline media than in neutral.  

Keywords: COVID-19; molnupiravir; conducting polymers; cobalt (III) oxyhydroxide; triazole; 
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1. Introduction 

For the last two years, the atypical pneumonia outbreak, caused by the newly found bat 

coronavirus, known as SARS-CoViD2, causing the COVID-19 infection [1 – 6], has influenced 

the situation in the world seriously. Despite different drugs and vaccines' proven efficiency, it 

becomes in jeopardy as novel coronavirus variants surge. Hence, developing an effective drug, 

vaccine, and specific treatment is still in progress.  

Molnupiravir (Figure 1, also known as MK-4482 and EIDD-2801) is an experimental 

drug initially developed to treat different types of influenza. Its antiviral action includes the 
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introduction of copying fails during the viral RNA replication, provoking a massive number of 

mutations, leading to error catastrophe and lethal mutagenesis [7-17].  

The COVID-19 clinical trial of molnupiravir has proven effective in reducing the 

hospitalization and death risk for newly-diagnosed high-risk patients. It was also efficient 

against delta, gamma, and mu variants. Nevertheless, the molnupiravir side effects haven´t 

been studied yet, like the exact action-concentration dependence. Therefore, developing an 

efficient methodology for its qualitative and quantitative determination is still an actual 

question [18-23].  

 
Figure 1. Molnupiravir. 

As for now, no electroanalytical method for molnupiravir determination has been 

developed at this date. Nevertheless, considering that it possesses electroactive groups, it may 

be detected either anodically or cathodically. For anodic oxidation, the electrooxidation is 

realized by hydroxyl groups and hydroxylamine moiety, present in the analytes, which have 

been already detected electrochemically [24-29] on both conducting polymers and metal oxide 

nanoparticles. Also, as the electrochemical instabilities have already been predicted and 

observed in those electroanalytical systems [30-32], they may appear in this system.  

Therefore, the goal of this work is the mechanistic theoretical investigation of the 

molnupiravir on the composite of the copolymer of 1,2,4-triazole and squaraine dye with cobalt 

(III) oxyhydroxide, by the most probable mechanism suggestion and mathematical modeling 

development. By analyzing the mathematical model, we investigate the electroanalytical 

system stability and the possibility of electrochemical instabilities. Also, we compare the 

system´s behavior with the behavior of similar ones [33-35].   
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Figure 2. The schematic representation for molnupiravir CoO(OH)-assisted determination.  
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2. System and its Modeling 

Molnupiravir may be electrooxidized on CoO(OH) by either the hydroxylamino group 

or by each of the hydroxy groups. The nitrogen heteroatom heterooxidation will be realized if 

a stronger oxidant is used. The electrooxidation is realized via a nitroso-intermediate, thereby 

oxidizing, yielding a nitro derivative. Schematically, the electroanalytical process may be 

described as in Figure 2.  

As for the copolymer, it stabilizes the CoO(OH) nanoparticles in its matrix and 

implements the function of the electronic transfer mediator.  

Therefore, in order to describe the system´s behavior, we introduce three variables:  

m – molnupiravir concentration in the pre-surface layer; 

m* - molnupiravir nitroso-form concentration in the pre-surface layer; 

c – cobalt (II) oxide polymer matrix coverage degree.  

Taking some assumptions [26 – 28], we describe the system´s behavior by the three-

dimensional equation set, exposed as:  

 

{
 
 

 
 
𝑑𝑚

𝑑𝑡
=

2

𝛿
(
𝛥

𝛿
(𝑚0 −𝑚) − 𝑟11 − 𝑟12)

𝑑𝑚∗

𝑑𝑡
=

2

𝛿
(𝑟11 − 𝑟21 − 𝑟22)

𝑑𝑐

𝑑𝑡
=

1

𝐶
(𝑟11 + 𝑟12 + 𝑟21 + 𝑟22 − 𝑟3)

    (1) 

 

Herein, 𝛥 is the diffusion coefficient, m0 is the molnupiravir bulk concentration, C is 

the CoO maximal matrix concentration, and the parameters r are the correspondent reaction 

rates, calculated as:  

 

𝑟11 = 𝑘11𝑚(1 − 𝑐)
2     (2) 

𝑟12 = 𝑘12𝑚(1 − 𝑐)
2     (3) 

𝑟21 = 𝑘21𝑚 ∗ (1 − 𝑐)2    (4) 

𝑟22 = 𝑘22𝑚 ∗ (1 − 𝑐)2    (5) 

𝑟3 = 𝑘3𝑐 exp (
𝐹𝜑0

𝑅𝑇
)     (6) 

Herein, the parameters k are the correspondent reaction rate constants, F is the Faraday 

number, φ0 is the potential slope in DEL, related to the zero-charge potential, R is the universal 

gas constant, and T is the absolute temperature of the solution. 

As it is possible to see, the behavior of this system for neutral and slightly alkaline 

media is less dynamic than in similar systems. On the other hand, molnupiravir sensitivity is 

enhanced, as shown below. 

3. Results and Discussion 

The electroanalytical behavior of the system with molnupiravir electrochemical 

determination is described by analyzing the equation-set (1) using the linear stability theory. 

The steady-state Jacobian matrix members may be expressed as:  

 

(

𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23
𝑎31 𝑎32 𝑎33

)     (7) 
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Herein:  

𝑎11 =
2

𝛿
(−

𝛥

𝛿
− 𝑘11(1 − 𝑐)

2 − 𝑘12(1 − 𝑐)
2)     (8) 

𝑎12 = 0      (9) 

𝑎13 =
2

𝛿
(2𝑘11𝑚(1 − 𝑐) + 2𝑘12𝑚(1 − 𝑐))   (10) 

𝑎21 =
2

𝛿
(𝑘11(1 − 𝑐)

2)     (11) 

𝑎22 =
2

𝛿
(−𝑘21(1 − 𝑐)

2 − 𝑘22(1 − 𝑐)
2)   (12) 

𝑎23 =
2

𝛿
(−2𝑘11𝑚(1 − 𝑐) + 2𝑘21𝑚 ∗ (1 − 𝑐) + 2𝑘22𝑚 ∗ (1 − 𝑐))  (13) 

𝑎31 =
1

𝐶
(𝑘11(1 − 𝑐)

2 + 𝑘12(1 − 𝑐)
2)   (14) 

𝑎32 =
1

𝐶
(𝑘21(1 − 𝑐)

2 + 𝑘22(1 − 𝑐)
2)   (15) 

𝑎33 =
1

𝐶
(−2𝑘11𝑚(1 − 𝑐) − 2𝑘12𝑚(1 − 𝑐) − 2𝑘21𝑚 ∗ (1 − 𝑐) − 2𝑘22𝑚 ∗ (1 − 𝑐) −

𝑘3 exp (
𝐹𝜑0

𝑅𝑇
) + 𝑗𝑘3𝑐 exp (

𝐹𝜑0

𝑅𝑇
))    (16) 

 

Contrarily to similar systems [33-35], in which the oscillatory behavior is highly 

probable, in this system, it is far less probable, is caused by a unique factor of the cyclic DEL 

capacitance changes during the electrochemical stage. Mathematically, this factor is described 

by the positivity of 𝑗𝑘3𝑐 exp (
𝐹𝜑0

𝑅𝑇
) > 0 if j>0, and this is the unique positive Jacobian matrix 

element. The oscillations are expected to be frequent and of small amplitude.  

If the mentioned element is negative, the steady-state stability is realized. It may be 

shown by the Routh-Hurwitz criterion applied to the Jacobian matrix. Rewriting its determinant 

as (17): 

 

4

𝛿2𝑆
|
−𝜅 − 𝛯 − 𝐿 0 𝛬

𝛯 −𝛴 𝛲 − 𝛬
𝛯 + 𝐿 𝛴 −𝛲 − 𝛬 − 𝛺

|   (18) 

 

and imputing the Det J<0 condition, salient from the criterion, we obtain the steady-state 

stability requirement (19): 

 

𝛬(2𝛯𝛴 + 𝐿𝛴) − 𝛴𝛺(𝜅 + 𝛯 + 𝐿) < 0    (19) 

 

which may be thereby rewritten as (20):  

 

𝛬(2𝛯𝛴 + 𝐿𝛴) < 𝛴𝛺(𝜅 + 𝛯 + 𝐿)    (20) 

 

Describing either diffusion or kinetically controlled efficient electroanalytical system. 

The condition (20) corresponds to the linear current–concentration dependence,  providing a 

facile analytical signal interpretation. Moreover, the system´s behavior becomes even more 

stable than [33-35].  

From the electroanalytical point of view, the monotonic instability, correspondent to 

the detection limit, is also probable if the destabilizing and stabilizing influences are equal. Its 

conditions will be described as: 
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𝛬(2𝛯𝛴 + 𝐿𝛴) = 𝛴𝛺(𝜅 + 𝛯 + 𝐿)    (21) 

 

This system describes the electroanalytical behavior of the molnupiravir determination 

in a neutral and slightly alkaline medium. In a strongly alkaline medium, the electrooxidation 

will be accompanied by the stable ionic forms transformations, influencing the DEL. Also, if 

pH>0, cobalt (III) oxyhydroxide will be dissolved, making the system’s behavior. This case 

will be evaluated in our next works.  

4. Conclusions 

From the system with the electrochemical determination of molnupiravir determination 

on the 1,2,4-triazole copolymer with the squaraine dye composite with CoO(OH), it was 

possible to conclude that the electroanalytical process is both diffusion and kinetically 

controlled;the linear dependence between the electrochemical parameter and concentration of 

the drug is realized in a broad topological parameter region. The composite is an efficient 

electrode modifier for molnupiravir electrochemical determination; the oscillatory behavior in 

this system is less probable than in similar systems, being caused uniquely and exclusively by 

the DEL influences of the electrochemical stage.  
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