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Abstract: The theoretical description for hydroxyquinol and phloroglucinol electrochemical 

determination in food and wastewater has been made in this work. The efficiency of the cobalt (III) 

oxyhydroxide for this determination is verified from either an electroanalytical or electrosynthetical 

point of view, as it also provides assisted electro(co)polymerization. The stable steady-state is easy to 

obtain and maintain, confirming the electrode modifier's efficiency and the easy interpretation of curves 

for direct and indirect determination. This process may also efficiently remove phenolic compounds 

from the pharmaceutical wastewater. 
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1. Introduction 

Phenol [1–4] is one of the most widespread pollutants in the pharmaceutical and food 

industry wastewater. One of the most popular methods for its removal consists of its 

mineralization, by which it is firstly oxidized to polyphenolic compounds and then to carbon 

dioxide and water (Figure 1).  
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Figure 1. Phenol gradual oxidation and mineralization. 

Either the proper phenol or the products of its gradual oxidation are natural compounds. 

For example, the proper phenol and 1,4-hydroquinone are among the toxins of the yellow 

stainer mushroom Agaricus xanthodermus [5–10]. 1,2-Hydroquinone is decarboxylate of 

protocatechic acid, and pyrogallol (1,2,3-trihydroxybenzene) is decarboxylate of gallic acid. 

The acids' derivatives may be found in fruit juices, wines, biodiesel, etc. Triphenols, which are 

pyrogallol (1,2,4-trihydroxyquinone), hydroxyquinol (1,2,4-trihydroxybenzene), and 

phloroglucinol (1,3,5-trihydroxyquinone) are also important intermediates of phenol 

mineralization and important natural compounds. 

Hydroxyquinol (1,2,4-trihydroxybenzene) is a natural antioxidant, a fructose 

fermentative dehydratation product. Its derivatives (ethers and esters) are natural aromatizers 

and sweeteners. For example, sesamol is a hydroxyquinol ether responsible for the taste of 

Turkish delights, including lokum, tahini halva, and baklava. It also may be found in ayran, 

tan, and doug milk drinks and traditional Inebolu simit from Kastamonu.  

Phloroglucinol (1,3,5-trihydroxybenzene) may be either an industrial effluent or a 

metabolism product of certain plants and microorganisms. It is also a base for phlorotannins. 

Its name is explained by its flowerish scent ("phloro-") and sweet taste ("glucinol"). As a 

triphenol, it exists in the form of two tautomers (Fig. 2)  
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O
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Figure 2. Phloroglucinol tautomerism. 

It is widely used in dye synthesis and as a veterinary drug for gallstone treatment in 

cattle. It is also used as a monomer for conducting polymers. For this and other reasons, 
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developing a rapid and efficient method for hydroxyquinol and phloroglucinol determination 

is really actual [11–14].  

Cobalt (III) oxyhydroxide [15–21] (alone and in composite with conducting polymers) 

has become a popular electrode modifier for electroanalytical systems. It is a semiconducting 

material, similar to titanium dioxide, but more electroactive. It may be an interesting electrode 

modifier for phenolic and polyphenolic compounds' electrochemical determination and 

electropolymerization. Therefore, this work aims to theoretically investigate hydroxyquinol 

and phloroglucinol electrochemical determination over cobalt (III) oxyhydroxide. This aims to 

find the condition of the parameter range for the best analytical signal interpretation, the 

oscillatory and monotonic instabilities condition, and the comparison of the behavior of this 

system with that of similar ones [22–28].  

2. Materials and Methods 

Hydroxyquinol may be electrooxidized by either α- or γ-hydroquinonic scenarios. It 

may also be electropolymerized. As for phloroglucinol, in the analysis conditions, it may only 

participate in the macromolecular electrooxidation scenario, yielding a (co)polymer (Figure 3). 
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Figure 3. The schematic representation of the electroanalytical process.  

In this scheme, the electrochemical determination and quantification of hydroxyquinol 

will be direct, and for phloroglucinol, it will be indirect. Therefore, taking into account the 

above-mentioned statements and taking some assumptions [22–28], we describe the system's 

behavior by a trivariant equation-set (1):  
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𝑑ℎ

𝑑𝑡
=

2

𝛿
(
𝛨

𝛿
(ℎ0 − ℎ) − 𝑟11 − 𝑟12 − 𝑟𝑝)

𝑑𝑝

𝑑𝑡
=

2

𝛿
(
𝑃

𝛿
(𝑝0 − 𝑝) − 𝑟𝑝)

𝑑𝑐

𝑑𝑡
=

1

𝐶
(𝑟11 + 𝑟12 + 𝑟𝑝 − 𝑟𝑐)

                     (1) 

Herein, h and p are hydroxyquinol and phloroglucinol concentrations in the pre-surface 

layer; H and P are their diffusion coefficients, h0 and p0 are their bulk concentrations, c is the 

cobalt (II) oxide surface coverage degree, C is this maximal concentration and the parameters 

r are their correspondent reaction rates, which, in neutral media, may be calculated as:  

𝑟11 = 𝑘11ℎ(1 − 𝑐)
2                                             (2) 

𝑟12 = 𝑘12ℎ(1 − 𝑐)
2                                             (3) 

𝑟𝑝 = 𝑘𝑝ℎ
𝑥𝑝𝑦(1 − 𝑐)𝑧                                           (4) 

𝑟𝑐 = 𝑘𝑐𝑐 exp (
𝐹𝜑0

𝑅𝑇
)                                             (5) 

In which the parameters k are the correspondent reaction rate constants, x, y, and z are 

polymerization reaction orders, F is the Faraday number, 𝜑0 is the zero-charge related potential 

slope, R is the universal gas constant, and T is the absolute temperature.  

In neutral media, the ionization of phenolic compounds is reduced and, therefore, 

neglected. So, in this case, the oscillatory behavior will be less probable than in alkaline media, 

and the electroanalytical process will be more stable, as shown below.  

3. Results and Discussion 

To investigate the system's stability with the hydroxyquinol and phloroglucinol 

electrochemical determination over CoO(OH)-modified electrode in neutral media, we 

investigate the equation-set (6) using linear stability theory. The steady-state Jacobian matrix 

components may be described as:  

(

𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23
𝑎31 𝑎32 𝑎33

)                                                  (6) 

Herein:  

𝑎11 =
2

𝛿
(−

𝛨

𝛿
− 𝑘11(1 − 𝑐)

2 − 𝑘12ℎ(1 − 𝑐)
2 − 𝑥𝑘𝑝ℎ

𝑥−1𝑝𝑦(1 − 𝑐)2)     (7) 

𝑎12 =
2

𝛿
(−𝑦ℎ𝑥𝑝𝑦−1(1 − 𝑐)2)                                 (8) 

𝑎13 =
2

𝛿
(2𝑘11ℎ(1 − 𝑐) + 2𝑘12ℎ(1 − 𝑐) + 𝑧𝑘𝑝ℎ

𝑥𝑝𝑦(1 − 𝑐)𝑧−1)     (9) 

𝑎21 =
2

𝛿
(𝑥𝑘𝑝ℎ

𝑥−1𝑝𝑦(1 − 𝑐)2)                        (10) 

𝑎22 =
2

𝛿
(−

𝑃

𝛿
− 𝑦ℎ𝑥𝑝𝑦−1(1 − 𝑐)2)                     (11) 

𝑎23 =
2

𝛿
(𝑧𝑘𝑝ℎ

𝑥𝑝𝑦(1 − 𝑐)𝑧−1)                        (12) 
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𝑎31 =
1

𝐶
(𝑘11(1 − 𝑐)

2 + 𝑘12ℎ(1 − 𝑐)
2 + 𝑥𝑘𝑝ℎ

𝑥−1𝑝𝑦(1 − 𝑐)2)      (13) 

𝑎32 =
1

𝐶
(𝑦ℎ𝑥𝑝𝑦−1(1 − 𝑐)2)                     (14) 

𝑎33 =
1

𝐶
(−𝑘11ℎ(1 − 𝑐) − 2𝑘12ℎ(1 − 𝑐) − 𝑧𝑘𝑝ℎ

𝑥𝑝𝑦(1 − 𝑐)𝑧−1 − 𝑘𝑐 exp (
𝐹𝜑0

𝑅𝑇
) +

𝑗𝑘𝑐𝑐 exp (
𝐹𝜑0

𝑅𝑇
))         (15) 

In neutral media, the chemical stage does not affect the double electric layer, reason 

why the oscillatory behavior will be caused by the only factor of DEL impact of the 

electrochemical stage, described by the positivity of   𝑗𝑘𝑐𝑐 exp (
𝐹𝜑0

𝑅𝑇
) > 0, if j>0. This factor 

is common for all similar systems [22–28] and also defines the dependence of the oscillation 

frequency and amplitude from the background electrolyte composition.  

Avoiding the cumbersome expression during the determinant analysis, we introduce 

new variables and rewrite the determinant as (16):  

4

𝛿2𝐶
|
−𝜅 − 𝛯 − 𝛴 −𝛲 𝛬 + 𝛷

−𝛴 −𝜉 − 𝛲 𝛷
𝛯 + 𝛴 𝛲 −𝛬 − 𝛷 − 𝛺

|             (16) 

which, considering the determinant properties, will be rewritten as (17):  

 

4

𝛿2𝐶
|
−𝜅 − 𝛯 − 𝛴 −𝛲 𝛬 + 𝛷

−𝛴 −𝜉 − 𝛲 𝛷
−𝜅 0 −𝛺

|               (17) 

 

Applying the Det J<0 requisite, salient from the Routh-Hurwitz criterion, we obtain the 

steady-state stability condition, expressed as (18): 

−𝑃(𝜅𝛺 + 𝛯𝛺 + 𝜅𝛬) − 𝜉(𝜅𝛺 + 𝛯𝛺 + 𝛴𝛺 + 𝜅𝛬 + 𝜅𝛷) < 0          (18) 

Defining a highly stable electroanalytical system in which the linear current-

concentration dependence range will be wider than for alkaline media [21–28]. For this reason, 

neutral or neutralized pH may be recommended for the electroanalytical process, which will 

be both diffusion or kinetically controlled, with a higher impact of the kinetical factor.  

As for the detection limit, it defines the margin between stable steady-states and 

unstable states. Being described by the monotonic instability, its condition is exposed as (19):  

−𝑃(𝜅𝛺 + 𝛯𝛺 + 𝜅𝛬) − 𝜉(𝜅𝛺 + 𝛯𝛺 + 𝛴𝛺 + 𝜅𝛬 + 𝜅𝛷) = 0                 (19) 

The phenolization scenario [27], yielding the 1,2,3,5-tetrahydroxybenzene, may also be 

possible. This oxidation scenario mimics the action of pyrogallol hydroxytransferase and may 

be realized by CoO(OH) in a lightly alkaline medium. In this case, the direct detection of both 

hydroxyquinol and phloroglucinol becomes more efficient. 

4. Conclusions 

From the analysis of the system with hydroxyquinol and phloroglucinol 

electrochemical determination over CoO(OH), it was possible to prove that it is an excellent 

electroanalytical electrode modifier and electropolymerization initiator for phenolic 

compounds analysis in food and wastewater and electropolymerization. The linear 

concentration dependence range is easily achieved in a kinetically controlled system. In turn, 
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the oscillatory behavior is expected to be probable due to the double electric layer ionic force 

cyclic changes in the electrochemical stage, affecting the steady-state stability. Either way, its 

probability is lower in neutral than in an alkaline medium. The probability of the oscillatory 

behavior and the oscillation amplitude will depend highly on the electrolyte composition of the 

solution background. 
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