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Abstract: The possibility of electroanalytical variation for a well-known litmus acidity test has been 

evaluated theoretically. In this system, pH is measured by a carbon material electrode, modified by the 

electropolymerized 7-hydroxyphenoxazone – the most pH-sensitive litmus dye. The investigation of 

the correspondent mathematical modeling confirms that the poly(7-hydroxyphenoxazone)-modified 

cathode is suitable for the pH measurements, especially in neutral and acidic solutions. Although the 

oscillatory and monotonic instabilities are more probable than in similar systems, the electroanalytical 

process tends to be efficient, and the analytical signal is easy to interpret.  
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1. Introduction 

The litmus test is one of the first used to monitor the acidity and basicity of the solutions 

[1–4]. Litmus, found in lichens, growing all over the world, including those of the gene Rocella, 

Lecanora, Ochrolechia, Parmotrema, Dendrographa, and Palmotrema generally contain 

litmus dyes, which include both carbo and heterocyclic compounds. 

The main litmus chromophore is 7-hydroxyphenoxazone (Figure 1) [5–6], which is 

violet in a neutral medium, furtherly becoming red in acidic solutions and blue in basic ones: 

OH O

N

O

OH O

NH+

O

H
+

-O O

N

O

OH-

7-hydroxyphenoxazone
   (neutral form, violet)

7-hydroxyphenoxazonium
   (protonized form, red)

7-hydroxyphenoxazone
 phenolate form
   (basic form, blue)

Figure 1. 7-hydroxyphenoxazone and litmus colors. 

Dye electropolymerization become a popular and efficient tool for electroanalytical 

processes [7–14]. In these systems, dye polymers become efficient active substances and 

mediators for the electroanalysis of different analytes. Moreover, in the case of poly(7-

hydroxyphenoxazone)-assisted pH sensing, it will become a modernized version of a known 

method. Considering the presence of accepting groups in the dye structure, the cathodic pH 

measurement becomes viable.  

Nevertheless, the presence of electrochemical instabilities, which make the analytical 

signal difficult to interpret, may be associated with different behaviouristic effects of the 

electroanalytical processes [15–17]. Those instabilities are typical and may limit the 

electroanalytical and removal use of the electrochemical process. To foresee the possibility of 

the realization of the electrochemical instabilities, like the effect they may produce, it´s 

necessary to investigate the process from the mechanical point of view and analyze its behavior 

theoretically.  

So, the goal of this work is the mechanistic evaluation for poly(7-

hydroxyphenoxazone)-assisted reductive pH measurement, in which the dye interaction with 

protons with further reduction is included. The correspondent mathematical model is developed 

and analyzed using linear stability theory and bifurcation analysis. The theoretical investigation 

includes comparing the behavior of this system with that of similar ones [18–24]. 

2. Materials and Methods 

The first stage of the electroanalytical process includes the pyridinic nitrogen 

protonation, yet described in Figure 1 as one yielding the red (acidic) litmus form. In the case 

of cathodic reduction, the 7-hydroxyphenoxazonium salt is thereby reduced by either 

protonated pyrizinic nitrogen or carbonyl moiety.  

The protons are involved in all the mentioned processes, which is why both 

electrochemical peaks may be used for pH measurement. Depending on the 

electropolymerization technique, the 7-hydroxyphenoxazone units may be joined via each 

unit's electrophilic and nucleophylic sites (Figure 2).  
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Figure 2. The scheme for electroanalytical process.  

Taking this into account and accepting certain assumptions [18–21], we describe the 

system´s behavior by a bivariant equation set, exposed as:  

{

𝑑ℎ

𝑑𝑡
=

2

𝛿
(
𝛨

𝛿
(ℎ0 − ℎ) − 𝑟1 − 𝑟21 − 𝑟22)

𝑑𝑝

𝑑𝑡
=

1

𝑃
(𝑟1 − 𝑟21 − 𝑟22)

                                (1) 

Herein, h is the proton pre-surface concentration, H is its diffusion coefficient, ℎ0 is the 

protons’ bulk concentration, p is the protonated polymer surface coverage degree, P is its 

maximal surface concentration, and the parameters r stand for the correspondent reaction rates, 

calculated as:  

𝑟1 = 𝑘1(1 − 𝑝)ℎ
𝑛 exp(−𝛼ℎ)                                     (2) 

𝑟21 = 𝑘21𝑝ℎ
𝑥 exp (−

𝑚𝐹𝜑0

𝑅𝑇
)                                       (3) 

𝑟22 = 𝑘22𝑝ℎ
𝑦 exp (−

𝑛𝐹𝜑0

𝑅𝑇
)                                       (4) 

Herein, the parameters k stand for the correspondent reaction rate constants, n is the 

number of monomer units, 𝛼 is the parameter relating the pH and DEL ionic force, x and y are 

the proton reaction orders in the electrochemical stages, m and n are the numbers of the 

transferred electrons, F is the Faraday number, 𝜑0 is the zero-charge-related potential slope, R 

is the universal gas constant, and T is the absolute temperature.  

The ionic substances and forms are highly involved in all the chemical and 

electrochemical stages, which is why the DEL-reñated oscillatory behavior becomes more 

probable than for the simplest case. Nevertheless, the poly(7-hydroxyphenoxazone)-assisted 

pH electrochemical monitoring by cathodic route is efficient, especially in acidic and neutral 

media, as shown below.   

3. Results and Discussion 

In order to investigate the electrochemical behavior of the system with the poly(7-

hydroxyphenoxazone)-assisted pH electrochemical determination, we analyze the equation-set 

(1) alongside the algebraic relations (2–4) by means of linear stability theory. The steady-state 

Jacobian matrix members may be described as (5):  

https://doi.org/10.33263/BRIAC145.111
https://biointerfaceresearch.com/


https://doi.org/10.33263/BRIAC145.111  

 https://biointerfaceresearch.com/ 4 of 7 

 

(
𝑎11 𝑎12
𝑎21 𝑎22

)                                         (5) 

in which:  

𝑎11 =
2

𝛿
(−

𝛨

𝛿
− 𝑛𝑘1(1 − 𝑝)ℎ

𝑛−1 exp(−𝛼ℎ) + 𝛼𝑘1(1 − 𝑝)ℎ
𝑛 exp(−𝛼ℎ) −

𝑥𝑘21𝑝ℎ
𝑥−1 exp (−

𝑚𝐹𝜑0

𝑅𝑇
) − 𝑦𝑘22𝑝ℎ

𝑦−1 exp (−
𝑛𝐹𝜑0

𝑅𝑇
))        (6) 

𝑎12 =
2

𝛿
(𝑘1ℎ

𝑛 exp(−𝛼ℎ) − 𝑘21ℎ
𝑥 exp (−

𝑚𝐹𝜑0

𝑅𝑇
) − 𝑘22𝑝ℎ

𝑦 exp (−
𝑛𝐹𝜑0

𝑅𝑇
) +

𝑗 (𝑘22𝑝ℎ
𝑦 exp (−

𝑛𝐹𝜑0

𝑅𝑇
) + 𝑘22𝑝ℎ

𝑦 exp (−
𝑛𝐹𝜑0

𝑅𝑇
)))               (7)  

𝑎21 =
1

𝑃
(𝑛𝑘1(1 − 𝑝)ℎ

𝑛−1 exp(−𝛼ℎ) − 𝛼𝑘1(1 − 𝑝)ℎ
𝑛 exp(−𝛼ℎ) −

𝑥𝑘21𝑝ℎ
𝑥−1 exp (−

𝑚𝐹𝜑0

𝑅𝑇
) − 𝑦𝑘22𝑝ℎ

𝑦−1 exp (−
𝑛𝐹𝜑0

𝑅𝑇
))         (8) 

𝑎22 =
1

𝑃
(−𝑘1ℎ

𝑛 exp(−𝛼ℎ) − 𝑘21ℎ
𝑥 exp (−

𝑚𝐹𝜑0

𝑅𝑇
) − 𝑘22𝑝ℎ

𝑦 exp (−
𝑛𝐹𝜑0

𝑅𝑇
) +

𝑗 (𝑘22𝑝ℎ
𝑦 exp (−

𝑛𝐹𝜑0

𝑅𝑇
) + 𝑘22𝑝ℎ

𝑦 exp (−
𝑛𝐹𝜑0

𝑅𝑇
)))               (9) 

Avoiding the cumbersome expressions, we introduce new variables, rewriting the 

determinant as (10) 

2

𝛿𝑃
|
−𝜅 − 𝑌 − 𝑍    𝛬 − 𝛺
𝑌 − 𝑍 −𝛬 − 𝛺

|                            (10) 

The main conditions of the steady-state stability and the essential instabilities are 

exposed in Table 1:  

Table 1. The main stability conditions for the bivariant equation sets. 

 
Singular point 

 
Requirement 

Steady-state stability Tr J < 0, Det J>0 

Oscillatory instability (Hopf bifurcation) Tr J = 0, Det J>0 

Monotonic instability (Saddle-node bifurcation) Tr J < 0, Det J>0 

Considering the elements (6) and (9), this system's oscillatory behavior can appear. The 

main Hopf bifurcation condition is realized if the main diagonal contains positive elements 

related to the positive callback.  

The realization of the oscillatory behavior by Hopf bifurcation is given by the presence 

of the positive elements in the matrix main diagonal (which is necessary to satisfy the main 

condition Tr J=0). These elements are: 𝛼𝑘1(1 − 𝑝)ℎ
𝑛 exp(−𝛼ℎ) > 0 if 𝛼>0 and 

𝑗 (𝑘22𝑝ℎ
𝑦 exp (−

𝑛𝐹𝜑0

𝑅𝑇
) + 𝑘22𝑝ℎ

𝑦 exp (−
𝑛𝐹𝜑0

𝑅𝑇
)) > 0, if j>0. This positivity defines the 

oscillatory behavior caused by the capacitance effect of DEL in the electrochemical (in the case 

of the positivity of j) and chemical (in the case of the positivity of a) stages. The oscillation 

frequency and amplitude depend on the global electrolyte ionic composition. Mathematically, 

the condition of the oscillatory behavior will be described as (11):  

{
−
2

𝛿
(𝜅 + 𝑌 + 𝑍) −

1

𝑃
(𝛬 + 𝛺) = 0

2

𝛿𝑃
(𝜅𝛬 + 𝜅𝛺 + 2𝛶𝛺 + 2𝛧𝛬) > 0

                                      (11) 

In the case of the negativity of these elements, steady-state stability is warranted. Its 

condition will be described as (12):  

{
−
2

𝛿
(𝜅 + 𝑌 + 𝑍) −

1

𝑃
(𝛬 + 𝛺) < 0

2

𝛿𝑃
(𝜅𝛬 + 𝜅𝛺 + 2𝛶𝛺 + 2𝛧𝛬) > 0

                                      (12) 
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Really, if the variables a and j have null or negative values, the left side of the first 

inequation of (12) will be more damaging, stabilizing the system and ensuring the efficiency 

of the process from both electroanalytical and removal points of view. From the 

electroanalytical point of view, this condition will define the linear dependence between the 

electrochemical parameter and concentration, providing a straightforward interpretation of the 

analytical signal. As for the process, it will be kinetically controlled, considering rapid proton 

diffusion in water solutions.  

As for the  detection limit, it is correspondent to the monotonic instability, defined by 

the condition of Det J=0, or (13):  

{
−
2

𝛿
(𝜅 + 𝑌 + 𝑍) −

1

𝑃
(𝛬 + 𝛺) < 0

2

𝛿𝑃
(𝜅𝛬 + 𝜅𝛺 + 2𝛶𝛺 + 2𝛧𝛬) = 0

                                                    (13) 

The margin between the stable, steady, and unstable states is formed at this point. A 

multiplicity of unstable steady-states corresponds to this margin. The system chooses one of 

them, which is destroyed if the system conditions change.  

The pOH measurement in an alkaline medium is also possible over poly(7-

hydroxyphenoxazone). It will be manifested as an anodic process in which the ortho-

penalization, followed by quinone-hydroquinone oxidation, is realized. In this case, the 

system’s behavior will be described by a trivariate equation set (14): 

{
 
 

 
 
𝑑𝑎

𝑑𝑡
=

2

𝛿
(
𝐴

𝛿
(𝑎0 − 𝑎) − 𝑟1)

𝑑𝑝

𝑑𝑡
=

1

𝑃
(𝑟1 − 𝑟2)

𝑑𝑝∗

𝑑𝑡
=

1

𝑃
(𝑟2 − 𝑟31 − 𝑟32)

                                     (14) 

Which will be evaluated in our next works. 

4. Conclusions 

From the behavior investigation of the system with the pH electrochemical detection 

and monitoring, assisted by a conducting polymer based on litmus main chromophore, it was 

possible to conclude that the polyphenolic conducting polymer, based on a natural source, may 

be an efficient cathode modifier for pH determination, especially in neutral and acidic media. 

The behavior of the process becomes more accomplished due to the presence of the ionic form 

transformations, enhancing the probability of the oscillatory behavior. Nevertheless, it is an 

efficient process controlled by the kinetics of the chemical and electrochemical reactions that 

make up part of it.  
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