International Science Group ISG-KONF.COM

PERSPECTIVE DIRECTIONS FOR THE DEVELOPMENT OF SCIENCE AND PRACTICE

DOI 10.46299/ISG.2020.XX ISBN 978-1-64871-426-9

PERSPECTIVE DIRECTIONS FOR THE DEVELOPMENT OF SCIENCE AND PRACTICE

29.	Tsekhmistrenko O., Bityutskyy V., Tsekhmistrenko S. INFLUENCE OF SELENIUM COMPOUNDS ON HISTOLOGICAL INDICATORS OF QUAILS IN THE AGE ASPECT	95
30.	Tsykhanovska I., Evlash V., Hrachova I. «IMPROVING THE TECHNOLOGY OF SOUR MILK CHEESE DESSERT "FANTASY" WITH THE ADDITION OF FOOD ADDITIVE "MAGNETOFOOD" »	99
31.	Vozniuk T. ASPECTS OF THE STUDY OF SEXISM IN UKRAINIAN ADVERTISING	104
32.	Yerenko O. PHYTOCHEMICAL INVESTIGATHION OF GRASS OF INULA BRITANNICA L.	108
33.	Yurchuk O. SEMANTIC CHARACTERISTICS OF PEDAGOGICAL CONDITIONS OF FUTURE PRE-SCHOOL TEACHERS' PREPARATION FOR THE MOTION MODE IMPLEMENTATION IN THE CONDITIONS OF PRESCHOOL EDUCATION INSTITUTION	111
34.	Андрусенко О.А., Кіріченко А.В. ПОЧАТКОВИЙ ЕТАП РОЗСЛІДУВАННЯ КАТУВАНЬ, ЩО ВЧИНЯЮТЬСЯ СПІВРОБІТНИКАМИ НАЦІОНАЛЬНОЇ ПОЛІЦІЇ	115
35.	Бажан В.М., Романюк О.Н., Денисюк А.В. ВИКОРИСТАННЯ CAS-ТЕХНОЛОГІЙ ДЛЯ ПЛАНУВАННЯ ТА ПРОВЕДЕННЯ ХІРУРГІЧНИХ ОПЕРАЦІЙ	119
36.	Баранцова І.О. ОСОБЛИВОСТІ ПЕРЕКЛАДУ АНГЛОМОВНИХ РЕКЛАМНИХ ТЕКСТІВ	125
37.	Башинський І.А. ДЕТІНІЗАЦІЯ ТА ДОБРОВІЛЬНЕ ДЕКЛАРУВАННЯ ДОХОДІВ НАСЕЛЕННЯ ЯК ЧИННИК ПІДВИЩЕННЯ ПОДАТКОВОЇ КУЛЬТУРИ	128
38.	Безвесільна О., Назаренко Н., Киричук Ю. НЕЙРОННІ МЕРЕЖІ У ДОСЛІДЖЕННЯХ СИСТЕМИ КЕРУВАННЯ НАВІГАЦІЙНОГО КОМПЛЕКСУ	134
39.	Бєліков І.О. ФІЗИЧНЕ ВИХОВАННЯ ТА СПОРТ У КОНТЕКСТІ ДЕРЖАВНОЇ ПРОГРАМИ РОЗВИТКУ ФІЗИЧНОЇ КУЛЬТУРИ У ЗБРОЙНИХ СИЛАХ УКРАЇНИ–ДОСВІД, ПРОБЛЕМИ, ПЕРСПЕКТИВИ	139

PHYTOCHEMICAL INVESTIGATHION OF GRASS OF INULA BRITANNICA L.

Yerenko Olena

Ph.D., Assistant of the Department of Management and Pharmacy Economics and Medicinal Preparations Technology Zaporizhzhya State Medical University

The Inula L. genus of the Asteraceae family contains over 200 species, more than 30 of which sprout in Ukrainian flora. Of all 30 species of Inula L. genus, growing on the territory of Ukraine. But during the harvesting phytogenetically close species are constantly found: I. britannica L., I. oculus – Christi L., I. germanica L., I. salicina L., I. aspera Poir., I. sabuletorum Czern. ex Lavr., I. vulgaris Lam., I. thapsoides Bieb. ex Willd. Spreng., I. ensifolia L. and I. macrophylla Kar. et Kir. The plants are most often found and reproduce their thickets in Dnipro, Zaporizhzhya, Vinnytsya, Donetsk, Khmelnytskiy, Odessa, Ternopil and Chernivtsi regions [1, 2].

The representatives of Inula L. genus are perspective phytotherapy objects, which are traditionally used in scientific medicine and ethnoscience of many countries as expectorants during respiratory diseases, as diuretic, choleretic, anthelmintic and gall-forming agents. Thereby, the species containing a lot of biologically active compounds that have antiphlogistic, gastroprotective, antioxidant effects, are of particular interest now, namely Inula britannica L. [3, 4, 5, 6, 7, 8].

The purpose of this work is making qualitative analysis of ascorbic, organic acids and tannic substances content in the raw material of investigated species of Inula britannica L.

One of the most important physiological functions of ascorbic acid and free organic acids is the ability to regenerate the tissues and to normalize capillary permeability through collagen and procolagen synthesis. Their participation in blood coagulation mechanisms is of particular importance since the activity of platelets, prothrombin complex and thromboplastin depends on their presence. Scientific sources confirm vitamin C presence in raw material of many plant species. However, there is almost no information about ascorbic acid quantitative content.

The literature sources investigated indicate the presence and accumulation of ascorbic, free organic acids and tannic substances in the grass of many species of Inula L genus. However, the quantitative content of substances and their accumulation during vegetation are not established.

The presence of organic acids in raw material of investigated species of I. britannica L. was established with the help of paper chromatography and thin-layer chromatography methods in system efir petroleum - acetic acid - water (13:3:1) using compounds of working reference substances (Ascorbic acid Sigma-Aldrich (Germany)).

PERSPECTIVE DIRECTIONS FOR THE DEVELOPMENT OF SCIENCE AND PRACTICE

The quantitative determination of total organic acids was carried out according to XI edition of State Pharmacopoeia methods in terms of malic acid (Malic Acid DL (China)). In order to eliminate impact on accuracy during ascorbic acid determination, the concentrations of this substance (titration with 2,6-dichlorosodiumphenolindophenolate solution) were taken into account in calculations [9].

Water extracts were studied for the tannins presence in raw material of I. britannica L. investigated species. Compounds identification was carried out through chemical reactions in accordance with Ukrainian State Pharmacopeia.

The quantitative tannins content in raw material was carried out according to the XI edition of State Pharmacopoeia methods.

The presence of ascorbic and free organic acids in the grass of investigated species of I. britannica L. was determined on the previous step using paper chromatography and thin-layer chromatography methods in systems acetic acid 15%, efir petroleum - acetic acid - water (13:3:1) [10, 11]. At the same time, the chromatography of working reference substances was carried out. In order to display the ascorbic acid spots, 0.001 N solution of 2,6-dichloro-sodiumphenolindophenolate were used.

Maximum substances accumulation was observed during the period of mass vegetation and bud formation. Thus, the concentration of ascorbic acid in Inula britannica L. grass was established equal up to $0.48 \pm 0.05\%$ and $0.47 \pm 0.05\%$. At the same time, the content of free organic acids in Inula britannica L. grass was equal up to $0.19 \pm 0.02\%$ and $0.18 \pm 0.02\%$. High concentrations of compounds in the investigated species' vegetalraw material persisted until the end of flowering period.

In order to segregate tannins, the investigated raw material was extracted with the help of hot water; then the extract was purified from the related compounds presence by successive action of ether petroleum benzene, followed by a mixture of benzene and chloroform (1:1) and, finally, by petroleum ether and ethyl acetate. The preliminary extraction of investigated raw material with the help of nonpolar or low polar organic solvents was used to separate chlorophyll, lipids and terpenoids. Then, extraction with the help of ethanol with purification by column chromatography on polyamide was performed with the purpose of tannins segregation. Catechins were detected in the form of three pale blue spots (Rf = 0.44, 0.56 and 0.73). The chromatograms were dried, treated with iron (III) chloride solution, and a brownish-red stains colouring was observed. Catechin, catechin gallates and gall acid solutions (+) were used as working reference substances.

It was found out that raw material of I. britannica L. investigated species contained the following compounds from condensed tannins class: (+) catechin, catechin gallat. The tannins concentration in raw material is determined by gravimetry, photometry, spectrophotometry and other methods.

Significant tannins concentrations in raw material of I. britannica L. investigated species are important in the development of hepatoprotective effect of lyophilic extracts' biologically active compounds complex. The tannins content in Inula britannica L. grass during the flowering period was respectively equal to 9.30 ± 0.92 % and 8.62 ± 0.81 %.

PERSPECTIVE DIRECTIONS FOR THE DEVELOPMENT OF SCIENCE AND PRACTICE

Thus, the Inula britannica L. grass contained quite significant concentrations of ascorbic acid, free organic acids and tannic substances, which greatly influence the biological effect of herbal medicinal products made of raw material.

References

- 1. Mruthunjaya K., Hukkeri V. I., 2008, In vitro Antioxidant and free radical scavenging potential of Parkinsonia aculeate Linn, Pharmacognosy Magazine, 4(13):42-51.
- https://www.researchgate.net/publication/279899402_In_vitro_antioxidant_and_free _radical_scavenging_potential_of_Parkinsonia_aculeata_Linn
- 2. Samar Amin., Zahoor A Kaloo, Seema Singh, Tabinda Altaf, 2013, Medicinal importance of genus Inula A Review, Int J Cur Rev, 5(2):20-26.
- 3. Chupahina G. N., Maslennikov P. V., Skryipnik L. N., Besserezhnova M. I., 2012, Reaktsiya pigmentnoy i antioksidantnoy sistem rasteniy na zagryaznenie okruzhayuschey sredyi g. Kaliningrada vyibrosami avtotransporta, Vestnik Tomskogo gosudarstvennogo universiteta. Biologiya, 2(18):171-185. http://journals.tsu.ru/uploads/import/757/files/18-171.pdf
- 4. Seca Ana M. L., GrigoreAlice, Pinto Diana C.G.A., Silva Artur M.S., 2014, The genus Inula and their metabolites: From ethnopharmacological to medicinal uses. Journal of Ethnopharmacology, 154(2):286-310. https://doi.org/10.1016/j.jep.2014.04.010
- 5. Mohan S, Gupta D., 2016, Phytochemical analysis and differential in vitro cytotoxicity assessment of root extracts of Inula racemose, 89:781-795. DOI: 10.1016/j.biopha.2017.02.053
- 6. Kalachaveedu M., Raghavan D., Telapolu S., Kuruvilla S., Kedike B., 2017, Phytoestrogenic effect of Inula racemosa Hook f-a cardioprotective root drug in traditional medicine. J. Ethnopharmacol, 8: 408–416. DOI: 10.1016/j.jep.2017.09.001
- 7. Salim Hatim, Rimawi Waleed H., Mjahed Arwa, 2017, Analysis of Extracts From Palestinian Inula Viscosa for Their Phenolic, Flavonoid and Lipid Contents, Antioxidant, Antibacterial Activity. Journal of Chemistry and Biochemistry, 5(1):12-23. https://doi.org/10.15640/jcb.v5n1a2
- 8. Kurkin V. A., Avdeeva E. V., Petruhina I. K., 2015, Aktualnyie aspektyi standartizatsii lekarstvennogo rastitelnogo syirya, soderjaschego antratsenproizvodnyie, i slabitelnyih preparatov na ih osnove. Fundamental'nye issledovaniya, 2:1424-1431.
- 9. Sergunova E. V., Marahova A. I., Avrach A. S, 2013, Metodyi kolichestvennogo opredeleniya organicheskih kislot v lekarstvennom rastitelnom syire i vodnyih izvlecheniyah, Farmaciya, 4:8-11.
- 10. Spiridon Iuliana, Nechita Constantin Bogdan, Niculaua Marius, Silion Mihaela, Armatu Alice, Teacă Carmen-Alice, et al., 2013, Antioxidant and chemical properties of Inula helenium root extracts, Cent. Eur. J. Chem, 11(10): 1699-1709. DOI: 10.2478/s11532-013-0295-3
- 11. Yerenko O. K., 2013, Farmakognostichne vivchennya vidiv rodu Inula L. floru Ukrainu ta otrimannya substancij na ih osnovi [dissertation]. L'viv: L'vivs'kij nacional'nij medichnij universitet imeni Danila Galic'kogo, 252 p.