Aleksandrova K.V., D.Sc., professor, Head of the Department of Biological Chemistry Zaporozhye State Medical University

Vasylyev D.A., PhD., assistant of the Department of Biological Chemistry Zaporozhye State Medical University

Priimenko B.A.,

D.Sc., professor, professor of the Department of Organic and Bioorganic Chemistry Zaporozhye State Medical University

SYNTHESIS OF 3-METHYL-3,7-DIHYDRO-1H-PURINE-2,6-DIONE DERIVATIVES AND INVESTIGATIONS OF THEIR PHYSICOCHEMICAL PROPERTIES

The reaction of alkylation of 3-methyl-8-mercaptoxanthine was studied. Obtained derivatives of purin-2,6-dione were confirmed using methods of IR-, NMR-spectroscopy and mass-spectrometry. Conducted investigations unambiguously confirm the structure of the synthesized compounds.

Key words: synthesis, purine-2,6-dione, physicochemical properties, spectroscopy, spectrometry.

Нами було вивчено реакції алкілування 3-метил-8-меркаптоксантину. Будову отриманих похідних пурин-2,6діону було підтверджено методами IЧ-, ПМР-спектрометрії та мас-спектрометрії. Проведені дослідження повністю підтверджують структуру синтезованих сполук.

Ключові слова: синтез, пурин-2,6-діон, фізико-хімічні властивості, спектроскопія, спектрометрія.

Нами была изучена реакция алкилирования 3-метил-8-меркаптоксантина. Строение полученных производных пурин-2,6-диона было подтверждено методами ИК-, ПМР-спектрометрии и масс-спектрометрии. Проведенные исследования полностью подтверждают структуру синтезированных соединений.

Ключевые слова: синтез, пурин-2,6-дион, физико-химические свойства, спектроскопия, спектрометрия.

From the literature resources, it is known, that certain xanthine derivatives possess diuretic, antioxidant, radioprotective activities [1, c. 272; 2, c. 976; 3, c. 645; 4, c. 236]. Earlier reports of the synthesis of 7-alkyl-3-metilthioxanthines [5, c. 2133], which are obtained by reaction of the 7-alkyl-8-bromo-3-methylxanthines with sulfur nucleophiles (KSH, Na₂S). Subsequently, we described the alkylation of 7-substituted 3-methyl-8-thioxanthine [6, c. 3428]. 3-Methyl-8-mercaptoxanthine and its derivatives is the objects of studying their chemical, physico-chemical and biological properties.

The goal of our investigation is to study the reaction of alkylation of 3-methyl-8-mercaptoxanthine (II), which has several reaction centers $- N_1$, N_7 , N_9 , SH-group, as well as the search for biologically active compounds amongst obtained compounds.

Materials and methods. The object of this study is 3-methyl-8- mercaptoxanthine (II), which was obtained from 8-bromo-3-methylxanthine (I). By alkylation of compound (II) were synthesized corresponding 8-S-substituted 3-methylxanthines (III-X).

IR spectra were recorded on a spectrophotometer Bruker ALPHA. NMR-spectra were recorded on a Varian device (operating frequency of 200 MHz, the solvent DMSO-d6, TMS internal standard). Mass-spectra of the synthesized compounds were recorded on a Varian MAT-311A with direct sample introduction into the ion source under standard conditions: accelerating voltage of 3 kV, the cathode emission current is 300 mA, an ionizing voltage of 70 eV.

3-Methyl-8-merkaptoksantin (II)

A mixture of 24.5 g (0.1 mol) of 3-methyl-8-bromoxanthine (I), 15,2 g (0.2 mole) of thiourea, 100 ml of 48% HBr heated for 1 hour. Cooled and diluted with 300 ml H_2O . The precipitate was filtered off. Washed with water and alcohol. Dried. Yield: 16.2 g (82%). Mp > 320°C.

⁶ Found%: C 36.7; H, 3.3; N 28,6; S 16,1; C₆H₆N₄O₂S. Calculated%: C, 36.4; H, 3.1; N 28,3; S 16,2.

8-methylthio (III); 8-ethylthio (IV); 8-propylthio (V); 8-poxythio- (VI); 8-allylthio- (VII); 8-isobutylthio (VIII); 8-isopentiltio- (IX); 8-benziltio-(X)-3-methylxanthines

A mixture of 0.01 mole of 3-methyl-8-thioxanthine (II), 0,01 mole sodium hydroxide and 0.01 mole of the corresponding alkyl halide dissolved in 50 ml of an aqueous alcohol was heated at reflux for 2 hours. The mixture is cooled, diluted with an equal volume of water. The precipitate was filtered off and washed with acetone. Dried. The data on the compounds (III-X) shown in Table 1.

Results and its discussion. 3-Methyl-8-mercaptoxanthine (II) is a typical SH-acid, which give a possibility to create a large set of its derivatives, although we do not exclude the opportunity of alkylation at N_1 and N_7 . In this connection, we performed quantum-chemical calculation of charges for Huckel (II, Table 2).

In the uracil moiety on the N_1 positive charge is prevailed (+0.282994), in the imidazole moiety at the pyrrole N_7 deficit of electrons (+0.375876), and pyridine atom N_9 (-0.534601) and sulfur atom in 8 position of xanthine cycle acquires a slight positive charge due to the influence of the imidazole ring (+0.0286981).

We can conclude, relying on quantum-chemical calculations that SH-group must be the primary site of electrophilic attack. Subsequent alkylation proceeds at N_7 atom and then N_1 (II).

We have studied the reaction of 8-bromo-3-methylxanthine (I) with thiourea in HBr (HBr + CH3COOH in the ratio 1:1), leading to the production of 8-mercapto-3-methylxanthine (II, Scheme 1). The proposed method for the synthesis favors previously described [8], because laborious processes of autoclaving and

Scheme 1

Table 1

8-substitued derivatives of 3-methyl-8-mercaptoxanthine

№	R	M.p., °C	Found, %				Cross formula	Calculated,%				Yield,
			С	Н	Ν	S	Gross formula	С	Н	Ν	S	%
III	CH ₃	>300	39,8	3,9	26,2	15,0	$C_7H_8N_4O_2S$	39,6	3,8	26,4	15,1	63
IV	C ₂ H ₅	283-284	42,7	4,6	24,9	14,4	$C_8H_{10}N_4O_2S$	42,5	4,4	24,8	14,2	74
V	C ₃ H ₇	276-277	44,9	5,1	4,4	24,7	$C_9H_{12}N_4O_2S$	44,7	5,3	44,3	24,6	71
VI	CH ₂ CH(O)CH ₂	>300	42,7	4,0	22,1	12,7	$C_9H_{10}N_4O_2S$	42,5	3,9	22,0	12,6	65
VII	CH ₂ CH=CH ₂	251-252	45,3	4,4	23,6	13,6	$C_9H_{10}N_4O_2S$	45,4	4,2	23,5	13,4	68
VII	i-C ₄ H ₉	258-259	47,2	5,3	22,2	12,0	$C_{10}H_{13}N_4O_2S$	47,4	5,1	22,1	12,7	63
IX	i-C ₅ H ₁₁	234-235	49,4	6,1	20,9	12,0	$C_{11}H_{15}N_4O_2S$	49,2	6,0	20,9	11,9	71
Х	CH ₂ C ₆ H ₅	252-253	54,0	4,7	19,4	11,2	$C_{13}H_{13}N_4O_2S$	53,9	4,5	19,3	11,1	55

Table 2

Atom	Туре	Charge	Atom	Туре	Charge
N(1)	N Amide	+0.282994	0(11)	O Carbonyl	-0.900634
C(2)	C Carbonyl	+0.385209	C(12)	C Alkane	-0.0561881
N(3)	N Amide	+0.389089	S(13)	S Thiol	+0.0286981
C(4)	C Alkene	+0.165686	H(14)	H Amide	+0.0976268
C(5)	C Alkene	-0.0867212	H(15)	H Amine	+0.0748273
C(6)	C Carbonyl	+0.31083	H(16)	Н	+0.0349657
N(7)	N Pyrrole	+0.375876	H(17)	Н	+0.0373516
C(8)	C Alkene	+0.204567	H(18)	Н	+0.0377401
N(9)	N Imine	-0.534601	H(19)	H Thiol	+0.0299772
O(10)	O Carbonyl	-0.877294			

prolonged heating are excluded. 3-Methyl-8-mercaptoxanthine (II), it is a convenient starting material for the synthesis of 8-S-, N_1 - and N_7 -substituted derivatives (Scheme 1).

Structure II is confirmed by elemental analysis, IR-, NMR-spectroscopy and mass spectrometry. The IR spectrum of (II) has bands of stretching vibrations of the amide carbonyl in the 1715-1695 cm⁻¹, the absorption of NH-groups 3190-3160 cm⁻¹ in the form of broadened lines of medium intensity. Characteristic

absorption bands of the groups C=N, C=C shown at

1670-1640 and 1630-1600 cm⁻¹, C-SH at 800 cm⁻¹. NMR spectrum of compound II following proton signals: 11.36 (s, 1H, N₁H.); 3,66 (c, 3H, N₃CH₃.); 10,35 (c., 1H, N₇H). The mass spectrum II has a peak M^+ with m/z 198. The measurement of mass of compound II shows the mass number of 198.0258, which corresponds to the gross composition $C_6H_4N_4O_2S$. In the first stage, cleavage fragmentation particles HNCO, which is typical for uracil cycle (of the type "retrodiene

Fig. 1. Schematic mass-decay of compound (II)

Fig. 3. Scheme mass-decay of compound (IV)

Fig. 4. Scheme mass-decay of compound (V)

decay") into hypoxanthine. This fact confirms the measured mass of 155.0105 (F ion). The next stage begins with elimination of CO (measured – 127.0204) and COH (measured – 126.0125) from [M-HNCO]⁺ (F). H₂CN ion with m/z 99 is the result of the further decomposition of the uracil nucleus. There were found two ions with m/z 166 (low intensity) and the ion with m/z 197 – [M-H]⁺, indicating thiol group is present. The obtained mass-spectrum fully confirm the structure of interest.

The IR spectra of compounds III-X are characterized by present amide carbonyl stretching vibrations in the region 1690-1730 cm⁻¹, and characteristic absorption bands of C=N group at 1640-1660 cm⁻¹, CS - 630-750 cm⁻¹, S-CH2 - 1410-1425 cm⁻¹. NMR spectrum of 3-methyl-8-methylmercap-

NMR spectrum of 3-methyl-8-methylmercaptoxanthine (III) the following signals are recorded protons (δ -scale, ppm) 10.35 (s, 1H, N₇H.); 11,36 (c, 1H, N₁H.); 3,29 (c, 3H, N₃CH₃); 2,80 (c., 3H, S-CH₃) with fixed peak with M⁺ m/z 212, which corresponds to the calculated molecular mass. Fragmentation M⁺ (III) is associated with the elimination of the substituent at position 8 xanthine cycle with ion m/z 166 (F). Then ion (F) undergoes degradation associated with elimination of particles CH₃, NCONH, HNCO, CO, HCN and formation of the corresponding ions m/z 82, 95, 109, 123, 138 and others. Further decay molecular ions by electron impact is depicted in Scheme (Fig. 2). The mass spectrum of compound IV with M^+ peak m/z 226 corresponds the calculated molecular mass. Mass-spectrometric studies have shown that fragmentation M^+ (IV) is associated with the elimination of the substituent in the 8-position of the molecule with ions with m/z 198 [M-C₂H₄]⁺, m/z 166 [M-SC₂H₄]⁺. Subsequently ion (F₁) which has the structure 3-methyl-xanthine, cleaves to particles CH₃NCONH, NHCO, CO, HCN resulting ions with m/z 82, 123, 137, 138 (Fig. 3.). The mass spectra of V, VI with recorded peaks of molecular ions (M⁺, 240; M⁺, 254) match their gross composition.

Fragmentation M⁺ (V) and M⁺ (VI) proceeds and uniquely associated with the elimination of the substituent in position 8 xanthine cycle. The uracil fragment cleavage gives CH3NCONH fragments, CH₂NH, CO et al. (Fig. 4, 5). Mass spectrometry data unambiguously confirm the structure of the synthesized compounds II-X. **Conclusions:**

1. The reaction of 3-methyl-8-mercaptoxanthine with alkyl halides yields 3-methyl-8-alkylmercaptoxanthines.

2. Alkylation of 3-methyl-8-alkylmercaptoxanthines give 3-methyl-7-alkyl-8-alkylmercaptoxanthines.

3. Reactions of 3-methyl-7-alkyl-8-alkylmercaptoxanthines with methyl iodide give appropriates 1,3-dimethyl-7-benzyl-8-methylmercaptoxanthines.

4. A mass-spectrometric study of the synthesized compounds was carried out.

Literature:

1. Novel annelations of xanthines by the reaction of 8-aminoxanthines with dimethyl acetylene-dicarboxylate / T. Ueda, Y. Kawabata, N. Murakami [et al.] // Chem. Pharm. Bull.– 1991.– Vol. 39.– P. 270-276.

2. Exploring human adenosine A3 receptor complementarity and activity for adenosine analogues modified in the ribose and purine moiety / P. V. Rompaey, K. A. Jacobson, A. S. Gross // Bioorg. Med. Chem. – 2005. – Vol. 13. – P. 973-983.

3. Synthesis, biological and modeling studies of 1,3-di-n-propyl-2,4-dio-xo-6-methyl-8-(substituted) 1,2,3,4-tetrahydro [1,2,4]-triazolo [3,4-f]-purines as adenosine receptor antagonists / G. Pastorin, C. Bolcato, B. Cacciari [et al.] // II Farmaco. – 2005. – Vol. 60. – P. 643-651.

4. Protection from myocardial stunning by ischaemia and hypoxia with the adenosine A3 receptor agonist, IB-MECA / H. L. Maddock, N. M. Gardner, N. Khandoudi [et al.] // Eur. J. Pharmacol. – 2003. – Vol. 477(3). – P. 235-245.

5. Structure activity relationships at human and rat A2B adenosine receptors of xanthine derivatives substituted at the 1-, 3-, 7-, and 8-positions / S. Kim, M. A. Marshall, N. Melman [et al.] // J. Med. Chem. – 2002. – Vol. 45. – P. 2131-2138.

6. Synthesis of novel 1-alkyl-8-substituted-3-(3-methoxypropyl) xan-thines as putative A2B receptor antagonists / M. I. Nieto, M. C. Balo, J. Brea [et al.] // Bioorg. Med. Chem. – 2009. – Vol. 17. – P. 3426-3432.